skip to Main Content

Baixar Gta Iv Super Compactado 875mb 2012golkes |LINK|

par jarmtak
Publié: 17 juin 2022 (il y a 2 semaines)
Catégorie

Download ✑ ✑ ✑ https://bltlly.com/2r2j69

 
 
 
 
 
 
 

Baixar Gta Iv Super Compactado 875mb 2012golkes

Baixar Gta Iv Super Compactado 875mb 2012golkes  . a API  .Q:

A complex number satisfies $|z^2 + z + 1| = |z^3 + z^2 + z + 1|$. Find $z$.

I need some help with this problem. The first part of the problem seemed simple: I used the Heron formula to find the minimum and maximum. So we have:
$sqrt{left(frac{z + 1}{z}right)^2 – 1} leq |z| leq sqrt{left(frac{z + 1}{z}right)^2 + 1}$.
It follows that $|z| leq 1$, and I plugged these bounds into the original problem, found the minimum, and then plugged that into the quadratic equation. I got the roots $z = frac{1 pm sqrt{5}}{2}$, and by plugging the second root into the original expression, I got the final answer of $z = frac{sqrt{5} + 1}{2}$. So I’m 99% sure I got the solution. However, the homework does not specify that I should use the Heron formula or otherwise find the minimum or maximum. I know it’s guaranteed to have a real solution, but I’m just not sure of how to find the correct solution. Thanks!

A:

For a complex number $z$, the magnitude $|z|$ is defined as $sqrt{x^2 + y^2}$. Using this, we have
$$
|z^2 + z + 1| = sqrt{(z^2 + z + 1)^2} = sqrt{z^4 + 2z^3 + 3z^2 + z + 1} = sqrt{(z^2)^2 + 2z^2 + 1} cdot sqrt{3} = sqrt{3}|z|.
$$
Now consider $|z^3 + z^2 + z + 1|$. We have
begin{align}
|z^3 + z^2 + z + 1| &= sqrt{(z^3 + z^2 + z + 1)^2} = sq

f30f4ceada

https://pure-elite.com/license-key-vero-visi-v19-0/
https://warriorplus.com/o2/a/vqvqcq/0?p=12415
http://wp2-wimeta.de/gad-kille-maharashtra-pdf-free/

Back To Top